The reproductive physiology of the Pacific white-sided dolphin, Lagenorhynchus obliquidens, was characterized to facilitate the development of artificial insemination (AI) using cryopreserved spermatozoa. Specific objectives were to: 1) describe reproductive seasonality of the Pacific white sided dolphins; 2) describe urinary LH and ovarian steroid metabolites during the estrous cycle; 3) correlate LH and ovarian steroidal metabolite patterns to ultrasound-monitored follicular growth and ovulation; and 4) assess the efficacy of synchronizing estrus, sperm collection/cryopreservation, and intrauterine insemination. Ovulations (64%, n=37) and conceptions (83%, n=18) occurred from August to October. Peak mean serum testosterone (24 ng/ml), cross-sectional testicular area (41.6 cm(2)), and sperm concentration (144.3 x 10(7) sperm/ml) occurred in July, August, and September respectively. Spermatozoa were only found in ejaculates from July to October. Estrous cycles (n=22) were 31 d long and were comprised of a 10 d follicular and 21 d luteal phase. Ovulation occurred 31.2 h after the onset of the LH surge and 19.3 h after the LH peak. Follicular diameter and circumference within 12 h of ovulation were 1.52 and 4.66 cm respectively. Estrus synchronization attempts with altrenogest resulted in 17 (22%) ovulatory cycles with ovulation occurring 21 d post-altrenogest. Ten AI attempts using cryopreserved semen resulted in five pregnancies (50%). The mean gestation length was 356 days (range 348-367). These data provide new information on the Pacific white-sided dolphin's reproductive physiology and collectively enabled the first application of AI in this species.