Clinical use of bioartificial livers (BAL) strongly relies on the development of bioreactors. In this study, we developed a multi-layer radial-flow bioreactor based on galactosylated chitosan nanofiber scaffolds and evaluated its efficacy in vitro. The bioreactor contains 65 layers of stacked flat plates, on which the nanofiber scaffolds were electrospinned for hepatocyte immobilization and aggregation. Culture medium containing pig red blood cells (RBCs) was perfused from the center to periphery, so that exchange materials are sufficient to afford enough oxygen. We determined the parameters for hepatocyte-specific function and general metabolism and also measured the oxygen consumption rate (OCR). Microscope and scanned electron microscopy observation showed a tight adhesion between cells and scaffolds. Compared with the control (bioreactors without nanofiber scaffolds), the number of adhered cells in our bioreactor was 1.59-fold; the protein-synthesis capacity of hepatocytes was 1.73-fold and urea was 2.86-fold. Moreover, the OCR of bioreactors with RBCs was about 1.91-fold that of bioreactors without RBCs. The galactosylated chitosan nanofiber scaffolds introduced into our new bioreactor greatly enhanced cell adhesion and function, and the RBCs added into the culture medium were able to afford enough oxygen for hepatocytes. Importantly, our new bioreactor showed an exciting efficiency, and it may afford the short-term support of patients with hepatic failure.