Recently we characterized the immobilization-related osteopenia in adult rats and showed that it is caused by increased bone resorption and decreased bone formation (Weinreb et al. 1989 Bone 10:187). To assess the effect of age on disuse osteopenia, this study investigated the effects of immobilization on bone turnover in very young, suckling rats. The 15-day-old rats underwent unilateral hind limb immobilization by sciatic neurectomy; the contralateral limb was left intact and served as control. Experimental or sham-operated animals were killed after 0, 2, 4, or 12 days postsurgery. Dry, fat-free weight and ash weight were determined in both femora, and both tibiae were subjected to static and dynamic histomorphometry. Immobilization caused a progressive deficit in bone mass in the immobilized limb compared to the contralateral intact limb but did not affect femoral longitudinal growth. The total mineral content in the immobilized femora was 13.6% less than that in the intact limb by day 12. Concomitantly, tibial cancellous bone area and perimeter declined in the immobilized limb by 37.3 and 32.2%, respectively. This reduction in bone mass in the tibiae of immobilized limbs was associated with increased bone resorption, expressed as osteoclast perimeter, number of osteoclasts per mm surface, and number of osteoclasts per mm2 tissue area. Bone formation was reduced as a result of impaired osteoblast activity as evidenced by (1) decreased endocortical and trabecular mineral apposition rate; (2) reduced trabecular mineral formation rate; (3) decreased percentage of ash of the femoral dry weight; and (4) increased volume of unmineralized osteoid in the tibial metaphysis.(ABSTRACT TRUNCATED AT 250 WORDS)