In order to study intermediates in polyketide biosynthesis two nonhydrolyzable malonyl coenzyme A analogues were synthesised by a chemoenzymatic route. In these analogues the sulfur atom of CoA was replaced either by a methylene group (carbadethia analogue) or by an oxygen atom (oxadethia analogue). These malonyl-CoA analogues were found to compete with the natural extender unit malonyl-CoA and to trap intermediates from stilbene synthase, a type III polyketide synthase (PKS). From the reaction of stilbene synthase with its natural phenylpropanoid substrates, diketide, triketide and tetraketide species were successfully off-loaded and characterised by LC-MS. Moreover, the reactivity of the nonhydrolyzable analogues offers insights into the flexibility of substrate alignment in the PKS active site for efficient malonyl decarboxylation and condensation.