Inhibition of IGF-IR tyrosine kinase induces apoptosis and cell cycle arrest in imatinib-resistant chronic myeloid leukaemia cells

J Cell Mol Med. 2010 Jun;14(6B):1777-92. doi: 10.1111/j.1582-4934.2009.00795.x. Epub 2009 Jun 5.

Abstract

Although signalling through the type I insulin-like growth factor receptor (IGF-IR) maintains the survival of haematopoietic cells, a specific role of IGF-IR in haematological neoplasms remains largely unknown. Chronic myeloid leukaemia (CML) is the most common subtype of chronic myeloproliferative diseases. Typically, CML evolves as a chronic phase (CP) disease that progresses into accelerated (AP) and blast phase (BP) stages. In this study, we show that IGF-IR is universally expressed in four CML cell lines. IGF-IR was expressed in only 30% and 25% of CP and AP patients, respectively, but its frequency of expression increased to 73% of BP patients. Increased expression levels of IGF-IR with CML progression was supported by quantitative real-time PCR that demonstrated significantly higher levels of IGF-IR mRNA in BP patients. Inhibition of IGF-IR decreased the viability and proliferation of CML cell lines and abrogated their growth in soft agar. Importantly, inhibition of IGF-IR decreased the viability of cells resistant to imatinib mesylate including BaF3 cells transfected with p210 BCR-ABL mutants, CML cell lines and primary neoplastic cells from patients. The negative effects of inhibition of IGF-IR were attributable to apoptosis and cell cycle arrest due to alterations of downstream target proteins. Our findings suggest that IGF-IR could represent a potential molecular target particularly for advanced stage or imatinib-resistant cases.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis / drug effects*
  • Benzamides
  • Cell Cycle / drug effects*
  • Cell Line, Tumor
  • Cell Survival / drug effects
  • Down-Regulation / drug effects
  • Drug Resistance, Neoplasm / drug effects*
  • Fusion Proteins, bcr-abl / metabolism
  • Gene Expression Regulation, Neoplastic / drug effects
  • Humans
  • Imatinib Mesylate
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive / enzymology*
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive / genetics
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive / pathology*
  • Mice
  • Piperazines / pharmacology*
  • Protein Kinase Inhibitors / pharmacology
  • Pyrimidines / pharmacology*
  • Receptor, IGF Type 1 / antagonists & inhibitors*
  • Receptor, IGF Type 1 / genetics
  • Receptor, IGF Type 1 / metabolism

Substances

  • Benzamides
  • Piperazines
  • Protein Kinase Inhibitors
  • Pyrimidines
  • Imatinib Mesylate
  • Receptor, IGF Type 1
  • Fusion Proteins, bcr-abl