Most of what we know about the human frontal eye field (FEF) is extrapolated from studies in animals. There is ample evidence that this region is crucial for eye movements. However, evidence is accumulating that this region also plays a role in sensory processing and that it belongs to a "fast brain" system. We set out to investigate these issues in humans, using intracerebral recordings in patients with drug-refractory epilepsy. Event-related potential recordings were obtained from 11 epileptic patients from within the FEF region while they passed a series of visual and auditory perceptual tests. No eye movement was required. Ultra-rapid responses were observed, with mean onset latencies at 24 ms after stimulus to auditory stimuli and 45 ms to visual stimuli. Such early responses were compatible with cortical routes as assessed with simultaneous recordings in primary auditory and visual cortices. Components were modulated very early by the sensory characteristics of the stimuli, in the 30-60 ms period for auditory stimuli and in the 45-60 ms period for visual stimuli. Although the frontal lobes in humans are generally viewed as being involved in high-level cognitive processes, these results indicate that the human FEF is a remarkably quickly activated multimodal region that belongs to a network of low-level neocortical sensory areas.