Renal blood flow (RBF) and mean arterial blood pressure (MABP) were measured during serially induced seizures in anesthetized paralyzed rats to investigate possible alterations in hemodynamic responses during experimental status epilepticus. During initial seizures, MABP increased from 143 to 193 mmHg, and RBF decreased from 4.8 to 1.5 ml/min. In contrast, MABP fell from 124 to 100 mmHg and RBF dropped from 3.6 to 2.8 ml/min during late seizures. The large decreases in RBF during initial seizures were blocked by renal denervation or bilateral adrenalectomy. During the period of late seizures, both the increase in MABP and the decrease in RBF in response to intravenous boluses of norepinephrine fell to 55% of the preseizure value. Our data indicate that the marked decreases in RBF during early seizures can be mediated by either the renal nerves or the adrenal glands. Furthermore, decreased sensitivity of the vasculature to norepinephrine likely contributes to the diminution of both MABP and RBF responses during later seizures.