Background and purpose: Human growth and transformation-dependent protein (HGTD-P) is a new proapoptotic protein and an effector of cell death induced by hypoxia-ischemia (HI). The function of HGTD-P has been investigated in human prostate cancer cells and mouse neurons cultured in vitro. However, whether HGTD-P is involved in regulating the apoptosis of rat neurons is not clear, and the relevance of HGTD-P in HI animal models is still unknown. Therefore, in the present study, we tried to elucidate the role that HGTD-P plays in apoptosis of rat neurons subjected to HI, both in culture and in the developing rat brain in vivo.
Methods: Samples from primary cultured neurons and postnatal day 10 rat brains with HI were collected. RT-PCR, Western blotting, and immunocytochemistry were used to detect the expression and distribution of rat HGTD-P, cleaved caspase 3, and apoptosis- inducing factor (AIF). MTT assay, DAPI, TUNEL, and flowcytometry were used to detect cell viability and apoptosis.
Results: We found that HI upregulated the mRNA and protein levels of HGTD-P in rat neurons in vitro and in vivo. Antisense oligonucleotides (AS) targeted to HGTD-P inhibited the expression of HGTD-P, thus rescuing neuronal viability and attenuating neuronal apoptosis. In addition, we found that HGTD-P played its proapoptotic role by activating caspase 3 and inducing the translocation of AIF to nuclear.
Conclusions: Our findings show that HGTD-P plays a proapoptotic role in the developing rat brain after HI and that it may be a potential target in treating HI-induced brain damage.