Background: Traditional beta-quantification of plasma lipoproteins by ultracentrifugation separates triglyceride-rich lipoproteins (TGRL) from higher density lipoproteins. The cholesterol in the TGRL fraction is referred to as measured very low-density lipoprotein cholesterol (VLDL-C) recognizing that other TGRL may be present. The measured VLDL-C to total plasma triglyceride (VLDL-C/TG) has long been considered an index of average TGRL composition with abnormally high VLDL-C/TG ratios (>or=0.30 with TG>150mg/dL) indicative of atherogenic remnant accumulation (type III hyperlipidemia). However, virtually no reports are available which examine potential associations between CAD and VLDL-C/TG at the lower end of the spectrum.
Methods and results: We performed ultracentrifugation in 1170 cases with premature-onset, familial CAD and 1759 population-based controls and examined the VLDL-C/TG ratio as an index of TGRL composition. As expected, we found very high CAD risk associated with severe type III hyperlipidemia (OR 10.5, p=0.02). Unexpectedly, however, we found a robust, graded, and independent association between CAD risk and lower than average VLDL-C/TG ratios (p<0.0001 as ordered categories or as a continuous variable). Among those in the lowest VLDL-C/TG category (a ratio <0.12), CAD risk was clearly increased (OR 4.5, 95% CI 2.9-6.9) and remained significantly elevated in various subgroups including those with triglycerides below 200mg/dl, in males and females separately, as well as among those with no traditional CAD risk factors (OR 5.8, 95% CI 1.5-22). Significant compositional differences by case status were confirmed in a subset whose samples were re-spun with measurement of lipids and apolipoprotein B (apo B) in each subfraction.
Conclusions: We found a strong, graded, independent, and robust association between CAD and lower VLDL-C/TG ratios. We consider this a novel, hypothesis-generating observation which will hopefully generate additional future studies to provide confirmation and further insight into potential mechanisms.