Obesity is a major clinical problem in the western world, and many molecular targets have been explored in the search for effective therapeutic agents. One of these, antagonism of the cannabinoid 1 (CB1) receptor, rose to prominence following reports demonstrating the positive modulation of food intake by the CB1 antagonist, rimonabant (3) (SR141716A). In the present study, various diaryl-pyrazole derivatives containing cycloalkyl building blocks were synthesized and tested for CB1 receptor binding affinities. Thorough structure-activity relationship (SAR) studies to optimize the pyrazole substituents led to several novel CB1 antagonists with K(i) <or= 5 nM and with acceptable metabolic stability with human liver microsomes. Among these analogues, we identified 5-(4-cyclopropylphenyl)-1-(2,4-dichlorophenyl)-4-ethyl-N-pyrrolidin-1-yl-1H-pyrazole-3-carboxamide (11r), which exhibited a favorable pharmacological profile with outstanding efficacy in reducing serum lipid parameters of metabolic syndrome compared to clinical references.