Background: Intravesical BCG instillation is established and efficient in the prophylaxis of recurrent transitional cell carcinoma. A Th-1 biased immune response is postulated. Recent work has proven the efficacy of synthetic CpG-Oligodeoxynucleotides (ODN) as inducers and adjuvants for a strong Th1-response and there is evidence for a direct and/or adjuvant anti-neoplastic effect. The purpose of this study was to examine the local effects of CpG-ODN on the murine bladder wall after intravesical instillation and the effects on cytokine expression in an orthotopic murine bladder cancer model.
Materials and methods: Histopathology, immunohistochemistry and fluorescence microscopy were performed after different instillation schedules of stimulatory, non-stimulatory biotinylized and FITC-labelled CpG-ODN into the murine bladder. MB-49 murine bladder cancer cells were tested for TLR-9 expression to exclude a potential direct responsiveness to CpG-ODN. Furthermore induction of apoptosis was tested by annexin V staining and FACS analysis of CpG-ODN stimulated tumor cells. In an orthotopic C57/Bl6 murine bladder cancer model, the expressions of IL-12, IFNgamma, IL-10 and TGF-beta were evaluated after repeated CpG-ODN treatment.
Results: Single and repeated instillation of CpG-ODN induced subepithelial and urothelial lymphocytic infiltrations with consecutive apoptoses. PBS and non-stimulative ODN induced no visible reaction. Bladder submucosa stained positive for biotin. Controls showed no endogenic biotin staining. FITC-labelled ODN adhered to the bladder mucosa and penetration of the mucosal barrier was not detected. MB-49 TCC cells did not express TLR-9 and CpG-ODN did not induce apoptosis in these cells. Repeated intravesical instillations of CpG-ODN in orthotopic murine tumor bearing urinary bladders resulted in significant up-regulation of both Th-1 and Th-2 cytokines.
Conclusion: CpG-ODNs have promising anti-neoplastic potential. They exert a pronounced immunological response both in the native murine urinary bladder and in murine TCC. The mechanisms of action appear to be mediated immunologically, There was no direct effect of CpG-ODN on the tumor cells in this model.