Voltage-controlled slow light in an integrated semiconductor structure with net gain

Opt Express. 2006 Oct 16;14(21):9955-62. doi: 10.1364/oe.14.009955.

Abstract

We demonstrate the use of coherent population oscillations (CPO) to realize a monolithically integrated semiconductor device which allows voltage controlled tuning of the group velocity corresponding to a phase shift of up to 55 degrees at a frequency of 10 GHz. By combining sections of slow and fast light, corresponding to absorption and gain, we demonstrate control of both the slow-down factor and the signal amplitude, which is important for applications as true-time delay in microwave photonics. The physics of CPO is discussed in relation to electromagnetically induced transparency (EIT). In particular, we demonstrate and explain the possibility of achieving transparency when using the effect of CPO despite the fact that it relies on only a partial saturation of an absorption line.