Recent progress in functional neuroimaging research has provided the opportunity to probe at the brain's intrinsic functional architecture. Synchronized spontaneous neuronal activity is present in the form of resting-state networks in the brain even in the absence of external stimuli. The objective of this study was to investigate the presence of resting-state networks in the unsedated infant brain born at full term. Using functional MRI, we investigated spontaneous low-frequency signal fluctuations in 19 healthy full-term infants. Resting-state functional MRI data acquired during natural sleep was analyzed using independent component analysis. We found five resting-state networks in the unsedated infant brain born at full term, encompassing sensory cortices, parietal and temporal areas, and the prefrontal cortex. In addition, we found evidence for a resting-state network that enclosed the bilateral basal ganglia.