Fibrosis is a multicellular wound healing process, where myofibroblasts that express extracellular matrix components extensively cross-talk with other cells resident in the liver or recruited from the bloodstream. Macrophages and infiltrating monocytes participate in the development of fibrosis via several mechanisms, including secretion of cytokines and generation of oxidative stress-related products. However, macrophages are also pivotal in the process of fibrosis resolution, where they contribute to matrix degradation. T lymphocytes modulate the fibrogenic process by direct interaction with myofibroblasts and secreting cytokines. In general, Th2 polarized responses promote fibrosis, while Th1 cytokines may be antifibrogenic. NK cells limit the development of fibrosis and favor its resolution, at least in part via killing of fibrogenic cells. The possible role of NKT cells and B cells is emerging in recent studies. Thus, mononuclear cells represent a critical regulatory system during fibrogenesis and may become an appealing target for therapy.