Repetitive cycles of palatable food access and chronic calorie restriction alter feeding behaviors and forebrain neural systems. The purpose of this study was to determine the behavioral, endocrine, and meal-related hindbrain neural activation in adult male Sprague-Dawley rats exposed to a binge-access feeding schedule. The binge-access schedule consisted of repeated twice-per-week episodes of acute calorie restriction (to one-third of the previous day's intake) followed by 2 h of concurrent access to high-calorie palatable food (sweetened fat: 90% vegetable shortening-10% sucrose) and chow. The binge-access rats consumed more calories during the "binge" period than rats with continuous access to sweetened fat (continuous-access group) or subjected to repeated acute calorie restriction only (chow-restricted group). The binge-access group also exhibited a approximately 25% increase in sweetened fat intake from week 1 to week 6. Persistence of the binge phenotype in the binge-access animals was demonstrated 2 wk, but not 4 wk, after ad libitum chow. The binge-access and chow-restricted groups maintained a similar normal body composition and hormonal profiles, whereas the continuous-access animals developed an obese phenotype. Terminal ghrelin levels were significantly higher in the binge-access group than in the continuous-access group. Consumption of a standardized meal resulted in more c-Fos-positive cells along the anterior-posterior nucleus of the solitary tract regions in the binge-access group than in naive controls. These results suggest that repeated cycles of acute calorie restriction followed by palatable food produce physiological alterations that may facilitate overconsumption of a highly palatable food during limited-access periods.