Enzymatically dissociated flexor digitorum brevis (FDB) and soleus fibres from mouse were used to compare the kinetics of electrically elicited Ca2+ transients of slow and fast skeletal muscle fibres, using the fast Ca2+ dye MagFluo4-AM, at 20-22 degrees C. For FDB two Ca2+ transient morphologies, types I (MT-I, 11 fibres, 19%) and II (MT-II, 47 fibres, 81%), were found, the kinetic parameters (amplitude, rise time, half width, decay time, and time constants of decay) being statistically different. For soleus (n = 20) only MT-I was found, with characteristics similar to MT-I from FDB. Correlations with histochemically determined mATPase, reduced nicotinamide adenine dinucleotide diaphorase and alpha-glycerophosphate dehydrogenase activities, as well as immunostaining and myosin heavy chain electrophoretic analysis of both muscles suggest that signals classified as MT-I may correspond to slow type I and fast IIA fibres while those classified as MT-II may correspond to fast IIX/D fibres. The results point to the importance of Ca2+ signaling for characterization of muscle fibres, but also to its possible role in determining fibre function.