Proton therapy for the treatment of cancer is delivered using either passively scattered or scanning beams. Each technique delivers a different amount of dose to the skin, because of the specific feature of their delivery system. The amount of dose delivered to the skin can play an important role in choosing the delivery technique for a specific site. To assess the differences in skin doses, we measured the surface doses associated with these two techniques. For the purpose of this investigation, the surface doses in a phantom were measured for ten prostate treatment fields planned with passively scattered proton beams and ten patients planned with spot scanning proton beams. The measured doses were compared to evaluate the differences in the amount of skin dose delivered by using these techniques. The results indicate that, on average, the patients treated with spot scanning proton beams received lower skin doses by an amount of 11.8% +/- 0.3% than did the patients treated with passively scattered proton beams. That difference could amount to 4 CGE per field for a prescribed dose of 76 CGE in 38 fractions treated with two equally weighted parallel opposed fields.