Functional repair of embolized vessels in maize roots after temporal drought stress, as demonstrated by magnetic resonance imaging

New Phytol. 2009;184(1):245-256. doi: 10.1111/j.1469-8137.2009.02919.x. Epub 2009 Jun 26.

Abstract

Xylem sap under high tension is in a metastable state and tends to cavitate, frequently leading to an interruption of the continuous water columns. Mechanisms of cavitation repair are controversially discussed. Magnetic resonance (MR) imaging provides a noninvasive, high spatial and temporal resolution approach to monitor xylem cavitation, refilling, and functionality. Spin density maps of drought-stressed maize taproots were recorded to localize cavitation events and to visualize the refilling processes; c. 2 h after release of the nutrient solution from the homemade MR imaging cuvette that received the root, late metaxylem vessels started to cavitate randomly as identified by a loss of signal intensity. After c. 6 h plants were rewatered, leading to a repair of water columns in five out of eight roots. Sap ascent during refilling, monitored with multislice MR imaging sequences, varied between 0.5 mm min(-1) and 3.3 mm min(-1). Flow imaging of apparently refilled vessels was performed to test for functional repair. Occasionally, a collapse of xylem vessels under tension was observed; this collapse was reversible upon rewatering. Refilling was an all-or-none process only observed under low-light conditions. Absence of flow in some of the apparently refilled vessels indicates that functionality was not restored in these particular vessels, despite a recovery of the spin density signal.

MeSH terms

  • Droughts*
  • Magnetic Resonance Spectroscopy
  • Models, Biological
  • Plant Exudates / metabolism
  • Plant Roots / cytology
  • Plant Roots / physiology*
  • Plant Transpiration
  • Seedlings / physiology
  • Spin Labels
  • Stress, Physiological*
  • Time Factors
  • Xylem / physiology*
  • Zea mays / physiology*

Substances

  • Plant Exudates
  • Spin Labels