Preclinical development of a bifunctional cancer cell homing, PKCepsilon inhibitory peptide for the treatment of head and neck cancer

Cancer Res. 2009 Jul 15;69(14):5829-34. doi: 10.1158/0008-5472.CAN-08-3465. Epub 2009 Jun 30.

Abstract

Head and neck squamous cell carcinoma (HNSCC) is the sixth most frequent cancer worldwide, comprising approximately 50% of all malignancies in some developing nations. Our recent work identified protein kinase Cepsilon (PKCepsilon) as a critical and causative player in establishing an aggressive phenotype in HNSCC. In this study, we investigated the specificity and efficacy of HN1-PKCepsilon, a novel bifunctional cancer cell homing, PKCepsilon inhibitory peptide, as a treatment for HNSCC. HN1-PKCepsilon peptide was designed by merging two separate technologies and synthesized as a capped peptide with two functional modules, HN1 (cancer cell homing) and PKCepsilon (specific PKCepsilon inhibitory), connected by a novel linker module. HN1-PKCepsilon preferentially internalized into UMSCC1 and UMSCC36 cells, two HNSCC cell lines, in comparison with oral epithelial cells: 82.1% positive for UMSCC1 and 86.5% positive for UMSCC36 compared with 1.2% positive for oral epithelial cells. In addition, HN1-PKCepsilon penetrated HNSCC cells in a dose- and time-dependent manner. Consistent with these in vitro observations, systemic injection of HN1-PKCepsilon resulted in selective delivery of HN1-PKCepsilon into UMSCC1 xenografts in nude mice. HN1-PKCepsilon blocked the translocation of active PKCepsilon in UMSCC1 cells, confirming HN1-PKCepsilon as a PKCepsilon inhibitor. HN1-PKCepsilon inhibited cell invasion by 72 +/- 2% (P < 0.001, n = 12) and cell motility by 56 +/- 2% (P < 0.001, n = 5) in UMSCC1 cells. Moreover, in vivo bioluminescence imaging showed that HN1-PKCepsilon significantly (83 +/- 1% inhibition; P < 0.02) retards the growth of UMSCC1 xenografts in nude mice. Our work indicates that the bifunctional HN1-PKCepsilon inhibitory peptide represents a promising novel therapeutic strategy for HNSCC.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / pharmacology*
  • Apoptosis / drug effects
  • Cell Line, Transformed
  • Cell Line, Tumor
  • Cell Movement / drug effects
  • Cell Proliferation / drug effects
  • Drug Evaluation, Preclinical
  • Head and Neck Neoplasms / drug therapy*
  • Head and Neck Neoplasms / metabolism
  • Head and Neck Neoplasms / pathology
  • Humans
  • Mice
  • Mice, Nude
  • Peptides / chemical synthesis
  • Peptides / pharmacology*
  • Protein Kinase C-epsilon / antagonists & inhibitors*
  • Protein Kinase C-epsilon / metabolism
  • Protein Transport / drug effects
  • Treatment Outcome
  • Tumor Burden / drug effects
  • Xenograft Model Antitumor Assays

Substances

  • Antineoplastic Agents
  • HN1-PKCepsilon peptide
  • Peptides
  • Protein Kinase C-epsilon