The glideosome is a unique attribute of the Apicomplexa phylum. This myosin-based machine powers parasite motility, migration across biological barriers, host cell invasion and egress from infected cells. The timing, duration and orientation of gliding motility are tightly regulated to assure establishment of infection. Control of glideosome function occurs at several levels. The assembly of the molecular motor complex is governed by posttranslational modifications resulting from a calcium-dependent signalling cascade. The spatially controlled polymerization of actin filaments crucially impacts motility. The relocation of glycolytic enzymes in close proximity of the glideosome may enhance the local production of energy to sustain movement.