Protein microarray technologies are rapidly expanding to fulfill current needs of proteome discovery for disease management. Nanostructured materials have been shown to present interesting features when used in biological settings: nanostructured titanium oxide film (ns-TiOx), synthesized by supersonic cluster beam deposition (SCBD), has recently emerged as a biocompatible substrate in different biological assays. The ns-TiOx surface is characterized by a morphology at the nanoscale that can be tuned to modulate specific biomolecule-material interactions. Here we present a systematic characterization of ns-TiOx coatings as protein binding surfaces, comparing their performances with those of most common commercial substrates in protein and antibody microarray assays. Through a robust statistical evaluation of repeatability in terms of coefficient of variation (CV) analysis, we demonstrate that ns-TiOx can be used as reliable substrate for biochips in analytical protein microarray application.