In this study, we report on the discovery of isoxazole 1 as a potent dual inhibitor of p38alpha (IC(50) = 0.45 microM) and CK1delta (IC(50) = 0.23 microM). Because only a few effective small molecule inhibitors of CK1 have been described so far, we aimed to develop this structural class toward specific agents. Molecular modeling studies comparing p38alpha/CK1delta suggested an optimization strategy leading to design, synthesis, biological characterization, and SAR of highly potent compounds including 9 (IC(50) p38alpha = 0.006 microM; IC(50) CK1delta = 1.6 microM), 13 (IC(50) p38alpha = 2.52 microM; IC(50) CK1delta = 0.033 microM), 17 (IC(50) p38alpha = 0.019 microM; IC(50) CK1delta = 0.004 microM; IC(50) CK1epsilon = 0.073 microM), and 18 (CKP138) (IC(50) p38alpha = 0.041 microM; IC(50) CK1delta = 0.005 microM; IC(50) CK1epsilon = 0.447 microM) possessing differentiated specificity. Selected compounds were profiled over 76 kinases and evaluation of their cellular efficacy showed 18 (CKP138) to be a highly potent and dual-specific inhibitor of CK1delta and p38alpha.