Direct imaging of surface molecules and the interfaces between soft and hard materials on functionalized nanoparticles is a great challenge using modern microscopy techniques. We show that graphene, a single atomic layer of sp(2)-bonded carbon atoms, can be employed as an ultrathin support film that enables direct imaging of molecular layers and interfaces in both conventional and atomic-resolution transmission electron microscopy. An atomic-resolution imaging study of the capping layers and interfaces of citrate-stabilized gold nanoparticles is used to demonstrate this novel capability. Our findings reveal the unique potential of graphene as an ideal support film for atomic-resolution transmission electron microscopy of hard and soft nanomaterials.