Quorum Sensing is a type of bacterial cell-to-cell signaling that allows for cell density dependent regulation of gene expression. Many of the behaviors mediated by quorum sensing are critical for bacterial colonization or infection, and autoinducer-2 has been proposed as a universal interspecies signaling molecule that allows multispecies colonies of bacteria, e.g., biofilms or dental plaque, to behave as pseudomulticellular organisms. However, the direct detection of autoinducer-2 has been difficult, leaving the in vivo relevance of this signal in question. Herein we report a liquid chromatography-tandem mass spectrometric technique that enables reproducible, quantitative, and sensitive measurement of the concentration of autoinducer-2 from a variety of sources. This technique was applied to the detection of autoinducer-2 from Escherichia coli and Vibrio harveyi in proof-of-concept studies and was then used to directly measure the concentration of the signal produced by oral bacteria in human saliva.