Background: Traditional in vitro cell invasion assays focus on measuring one cell parameter at a time and are often less than ideal in terms of reproducibility and quantification. Further, many techniques are not suitable for quantifying the advancing margin of collectively migrating cells, arguably the most important area of activity during tumor invasion. We have developed and applied a highly quantitative, standardized, reproducible Nest Expansion Assay (NEA) to measure cancer cell invasion in vitro, which builds upon established wound-healing techniques. This assay involves creating uniform circular "nests" of cells within a monolayer of cells using a stabilized, silicone-tipped drill press, and quantifying the margin expansion into an overlaid extracellular matrix (ECM)-like component using computer-assisted applications.
Findings: The NEA was applied to two human-derived breast cell lines, MCF10A and MCF10A-CA1d, which exhibit opposite degrees of tumorigenicity and invasion in vivo. Assays were performed to incorporate various microenvironmental conditions, in order to test their influence on cell behavior and measures. Two types of computer-driven image analysis were performed using Java's freely available ImageJ software and its FracLac plugin to capture nest expansion and fractal dimension, respectively - which are both taken as indicators of invasiveness. Both analyses confirmed that the NEA is highly reproducible, and that the ECM component is key in defining invasive cell behavior. Interestingly, both analyses also detected significant differences between non-invasive and invasive cell lines, across various microenvironments, and over time.
Conclusion: The spatial nature of the NEA makes its outcome susceptible to the global influence of many cellular parameters at once (e.g., motility, protease secretion, cell-cell adhesion). We propose the NEA as a mid-throughput technique for screening and simultaneous examination of factors contributing to cancer cell invasion, particularly suitable for parameterizing and validating Cancer Systems Biology approaches such as mathematical modeling.