Estrogen receptor alpha and beta specific agonists regulate expression of synaptic proteins in rat hippocampus

Brain Res. 2009 Sep 22:1290:1-11. doi: 10.1016/j.brainres.2009.06.090. Epub 2009 Jul 9.

Abstract

Changes in hippocampal CA1 dendritic spine density and synaptic number across the estrous cycle in female rats correlate with increased hippocampal-dependent cognitive performance in a manner that is dependent on estrogen receptors (ERs). Two isoforms of the estrogen receptor, alpha and beta are present in the rat hippocampus and distinct effects on cognitive behavior have been described for each receptor. The present study generated a profile of synaptic proteins altered by administration of estradiol benzoate, the ERalpha selective agonist PPT (1,3,5-tris (4-hydroxyphenyl)-4-propyl-1H-pyrazole) and the ERbeta selective agonist DPN (2,3-bis (4-hydroxyphenyl) propionitrile) alone and in combination in comparison to vehicle in the CA1 region of the dorsal hippocampus. In the stratum radiatum, estradiol, DPN, and PPT increased PSD-95 and AMPA-type glutamate receptor subunit GluR1. Only DPN administration regulated expression of AMPA receptor subunits GluR2 and GluR3, increasing and decreasing levels respectively. DPN also increased GluR2 expression in the other lamina of the CA1. These results support previous reports that estradiol and isoform specific agonists differentially activate ERalpha and ERbeta to regulate protein expression. The distinct effects of DPN and PPT administration on synaptic proteins suggest that the desired therapeutic outcome of estrogen may be accomplished by using specific estrogen receptor agonists. Moreover, the effects of estradiol treatment on PSD-95 expression are consistent with a growing body of evidence that this postsynaptic protein is a key marker of estrogen action related to spine synapse formation.

MeSH terms

  • Analysis of Variance
  • Animals
  • Estradiol / analogs & derivatives
  • Estradiol / pharmacology
  • Estrogen Receptor alpha / agonists*
  • Estrogen Receptor alpha / metabolism
  • Estrogen Receptor beta / agonists*
  • Estrogen Receptor beta / metabolism
  • Estrogens / pharmacology
  • Female
  • Hippocampus / drug effects
  • Hippocampus / metabolism*
  • Immunohistochemistry
  • Membrane Proteins / metabolism*
  • Nerve Tissue Proteins / metabolism*
  • Neurons / drug effects
  • Neurons / metabolism
  • Ovariectomy
  • Rats
  • Rats, Sprague-Dawley

Substances

  • Estrogen Receptor alpha
  • Estrogen Receptor beta
  • Estrogens
  • Membrane Proteins
  • Nerve Tissue Proteins
  • estradiol 3-benzoate
  • Estradiol