N-terminally LRMK-linked HER-2 peptides, AE-37 [p776(774-788)] and AE-47 [Ava-F7(776-788)], aid differentiation of E75-TCR+CD8+ cells to perforin-positive cells

Anticancer Res. 2009 Jul;29(7):2427-35.

Abstract

The objective of this study was to discover whether the peptides LRMK and LRMK-Ava linked to the N-terminus of peptides HER-2 (774-788) and HER-2 (776-788), respectively, help differentiation of E75-TCR(+)CD8(+) cells. Activation was quantified in terms of proliferation of E75-TCR(+)CD8(+) cells expressing high, medium and low density amounts of the specific TCR. Differentiation to functional CD8(+) cells was quantified as induction of Perforin (Perf), the lytic-enzyme which mediates the effector function of CD8(+) cells, in E75-TCR(+)CD8(+) cells. Peripheral blood mononuclear cells (PBMCs) of 3 patients activated with E75(+)AE-37 and E75(+)AE-47 more greatly increased the number of E75-TCR(Hi) CD8(+)Perf(+) cells than PBMCs activated by AE-47 alone or AE-47(+) E75. E75 plus cytokines and cytokines alone activated more E75-TCR(Low) cells than did AE-37 and AE-47. E75(+) AE-37 and AE-37 also induced differentiation of small- and medium-size activated CD8(+) cells from BRC ascites, in allogeneic activation, to Perf(+) cells. Preferential differentiation of E75-TCR(+)CD8(+)Perf(+) cells in distinct patients by AE-37 and AE-47 indicates that cancer vaccines will benefit from such correct individual and disease-associated help. Additional studies using the natural peptides p776 and F7 are needed to understand whether the LRMK-(Ava) tetra-, or pentamer augments or inhibits differentiation of CD8(+) cells, compared with native, natural HER-2 peptides and/or protects CD8(+) cells activated by E75 and by other HLA-I bound peptides from death. Our findings also develop a model for uniform quantification of differentiated CD8(+) effectors.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • CD8-Positive T-Lymphocytes / cytology*
  • Cell Differentiation / drug effects*
  • Enzyme-Linked Immunosorbent Assay
  • Humans
  • In Vitro Techniques
  • Lymphocyte Activation
  • Peptide Fragments / pharmacology*
  • Perforin / metabolism*
  • Receptor, ErbB-2 / chemistry*
  • Receptors, Antigen, T-Cell / metabolism*

Substances

  • Peptide Fragments
  • Receptors, Antigen, T-Cell
  • Perforin
  • Receptor, ErbB-2