We studied effects of tetrac (tetraiodothyroacetic acid) on survival of GL261, a murine brain tumor cell line, following single doses of 250 kVp x-rays and on repair of damage (sublethal and potentially lethal damage repair; SLDR, PLDR) in both exponential and plateau phase cells. Cells were exposed to 2 muM tetrac (1 h at 37 degrees C) prior to x-irradiation. At varying times after irradiation, cells were re-plated in medium without tetrac. Two weeks later, colonies were counted and results analyzed using either the linear-quadratic (LQ) or single-hit, multitarget (SHMT) formalisms. Tetrac sensitized both exponential and plateau phase cells to x-irradiation, as shown by a decrease in the quasi-threshold dose (Dq), leading to an average tetrac enhancement factor (ratio of SF2 values) of 2.5. Tetrac reduced SLDR in exponential cells by a factor of 1.8. In plateau phase cells there was little expression of SLDR, but tetrac produced additional cell killing at 1-4 h after the first dose. For PLDR expression in exponential cells, tetrac inhibited PLDR by a factor of 1.9, and in plateau phase cells, tetrac decreased PLDR expression by a factor of 3.4. These data show that the decreased Dq value seen after single doses of x-rays with tetrac treatment is also accompanied by a significant decrease in recovery from sublethal and potentially lethal damage.