Background: Faces are arguably one of the most important object categories encountered by human observers, yet they present one of the most difficult challenges to both the human and artificial visual systems. A variety of experimental paradigms have been developed to study how faces are represented and recognized, among which is the part-spacing paradigm. This paradigm is presumed to characterize the processing of both the featural and configural information of faces, and it has become increasingly popular for testing hypotheses on face specificity and in the diagnosis of face perception in cognitive disorders.
Methodology/principal findings: In two experiments we questioned the validity of the part task of this paradigm by showing that, in this task, measuring pure information about face parts is confounded by the effect of face configuration on the perception of those parts. First, we eliminated or reduced contributions from face configuration by either rearranging face parts into a non-face configuration or by removing the low spatial frequencies of face images. We found that face parts were no longer sensitive to inversion, suggesting that the previously reported inversion effect observed in the part task was due in fact to the presence of face configuration. Second, self-reported prosopagnosic patients who were selectively impaired in the holistic processing of faces failed to detect part changes when face configurations were presented. When face configurations were scrambled, however, their performance was as good as that of normal controls.
Conclusions/significance: In sum, consistent evidence from testing both normal and prosopagnosic subjects suggests the part task of the part-spacing paradigm is not an appropriate task for either measuring how face parts alone are processed or for providing a valid contrast to the spacing task. Therefore, conclusions from previous studies using the part-spacing paradigm may need re-evaluation with proper paradigms.