Lectin mapping reveals stage-specific display of surface carbohydrates in in vitro and haemolymph-derived cells of the entomopathogenic fungus Beauveria bassiana

Microbiology (Reading). 2009 Sep;155(Pt 9):3121-3133. doi: 10.1099/mic.0.029157-0. Epub 2009 Jul 16.

Abstract

The entomopathogenic fungus Beauveria bassiana and its insect host target represent a model system with which to examine host-pathogen interactions. Carbohydrate epitopes on the surfaces of fungal cells play diverse roles in processes that include adhesion, non-self recognition and immune invasion with respect to invertebrate hosts. B. bassiana produces a number of distinct cell types that include aerial conidia, submerged conidia, blastospores and haemolymph-derived cells termed in vivo blastospores or hyphal bodies. In order to characterize variations in the surface carbohydrate epitopes among these cells, a series of fluorescently labelled lectins, combined with confocal microscopy and flow cytometry to quantify the response, was used. Aerial conidia displayed the most diverse lectin binding characteristics, showing reactivity against concanavalin A (ConA), Galanthus nivalis (GNL), Griffonia simplicifolia (GSII), Helix pomatia (HPA), Griffonia simplicifolia isolectin (GSI), peanut agglutinin (PNA), Ulex europaeus agglutinin I (UEAI) and wheatgerm agglutinin (WGA), and weak reactivity against Ricinus communis I (RCA), Sambucus nigra (SNA), Limax flavus (LFA) and Sophora japonica (SJA) lectins. Lectin binding to submerged conidia was similar to that to aerial conidia, except that no reactivity against UEAI, HPA and SJA was noted, and WGA appeared to bind strongly at specific polar spots. In contrast, the majority of in vitro blastospores were not bound by ConA, GNL, GSII, GSI, SNA, UEAI, LFA or SJA, with PNA binding in large patches, and some polarity in WGA binding noted. Significant changes in lectin binding also occurred after aerial conidial germination and in cells grown on either lactose or trehalose. For germinated conidia, differential lectin binding was noted between the conidial base, the germ tube and the hyphal tip. Fungal cells isolated from the haemolymph of the infected insect hosts Manduca sexta and Heliothis virescens appeared to shed most carbohydrate epitopes, displaying binding only to the GNL, PNA and WGA lectins. Ultrastructural examination of the haemolymph-derived cells revealed the presence of a highly ordered outermost brush-like structure not present on any of the in vitro cells. Haemolymph-derived hyphal bodies placed into rich broth medium showed expression of several surface carbohydrate epitopes, most notably showing increased PNA binding and strong binding by the RCA lectin. These data indicate robust and diverse production of carbohydrate epitopes on different developmental stages of fungal cells and provide evidence that surface carbohydrates are elaborated in infection-specific patterns.

MeSH terms

  • Animals
  • Beauveria / metabolism*
  • Beauveria / ultrastructure
  • Carbohydrate Metabolism*
  • Cell Membrane / metabolism*
  • Flow Cytometry
  • Hemolymph / microbiology*
  • Host-Pathogen Interactions
  • Hyphae / metabolism
  • Hyphae / ultrastructure
  • Lectins / metabolism*
  • Manduca / microbiology*
  • Microscopy, Confocal
  • Microscopy, Electron, Transmission
  • Spores, Fungal / metabolism
  • Spores, Fungal / ultrastructure

Substances

  • Lectins