Translocator protein (TSPO) is upregulated in activated microglia and thus can serve as a marker of neuroinflammation. Recently, a novel radioligand, (11)C-N,N-diethyl-2-[2-(4-methoxyphenyl)-5,7-dimethyl-pyrazolo[1,5-a]pyrimidin-3-yl]-acetamide ((11)C-DPA-713), has been described that binds to TSPO with high affinity. Here, we report the first examination of (11)C-DPA-713 in human subjects using PET.
Methods: Five healthy controls were studied with PET for 90 min after a bolus injection of high-specific-activity (11)C-DPA-713. For comparison, 2 additional healthy controls were studied with (11)C-R-PK11195. Arterial blood sampling and metabolite analysis were performed to allow the accurate quantification of tracer kinetics. Tracer uptake was evaluated for several brain regions. Tissue time-activity curves were fitted using 1- and 2-tissue-compartment models, with goodness-of-fit tests showing a preference for the 2-tissue model.
Results: In the healthy brain, the average plasma-to-tissue clearance and the total volume of distribution were an order of magnitude larger than measured for (11)C-R-PK11195. Accordingly, dose-normalized time-activity curves showed that (11)C-DPA-713 gives a larger brain signal.
Conclusion: Studies in patient populations will help determine whether (11)C-DPA-713 provides better sensitivity for evaluating increased TSPO expression. This initial study in humans shows that (11)C-DPA-713 is a promising ligand for evaluating TSPO binding with PET.