Pathogen detection is critical to the process of generating and testing powdered infant formula (PIF). An obstacle associated with PIF microbial surveillance is that most current procedures are time-consuming and labor-intensive. We have developed a rapid, DNA microarray-based detection technique to identify 10 different pathogenic bacteria associated with PIF contamination based on the 16S-23S rRNA gene internal transcribed spacer (ITS) sequences and wzy (O antigen polymerase) gene. Using this procedure, Enterobacter sakazakii, Salmonella enterica, Klebsiella pneumoniae, Klebsiella oxytoca, Serratia marcescens, Acinetobacter baumannii, Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus, and Escherichia coli O157 were identified. One hundred eighty-five strains were used to validate the microarray assay (including 134 target pathogen strains and 51 closely related bacteria). Twenty-seven probes reproducibly detected multiple pathogens with high specificity and sensitivity (0.100 ng genomic DNA or 10(4) CFU/ml). Twenty-one real PIF samples were tested by the microarray with 100% accuracy. The data presented reveal that the designed oligonucleotide microarray is a promising method for basic microbiology, clinical diagnosis, food safety, and epidemiological surveillance.