The issue of reconstructing lost or deformed bone presents an equal challenge in the fields of paleoanthropology, bioarchaeology, forensics, and medicine. Particularly, within the disciplines of orthodontics and surgery, the main goal of reconstruction is to restore or create ex novo the proper form and function. The reconstruction of the mandibular condyle requires restoration of articulation, occlusion, and mastication from the functional side as well as the correct shape of the mandible from the esthetic point of view. Meeting all these demands is still problematic for surgeons. It is unfortunate that the collaboration between anthropologists and medical professionals is still limited. Nowadays, geometric morphometric methods (GMM) are routinely applied in shape analysis and increasingly in the reconstruction of missing data in skeletal material in paleoanthropology. Together with methods for three-dimensional (3D) digital model construction and reverse engineering, these methods could prove to be useful in surgical fields for virtual planning of operations and the production of customized biocompatible scaffolds. In this contribution, we have reconstructed the missing left condylar process of the mandible belonging to a famous Italian humanist of the 15th century, Pico della Mirandola (1463-1494) by means of 3D digital models and GMM, having first compared two methods (a simple reflection of the opposite side and the mathematical-statistical GMM approach) in a complete human mandible on which loss of the left condyle was virtually simulated. Finally, stereolithographic models of Pico's skull were prototyped providing the physical assembly of the bony skull structures with a high fitting accuracy.
(c) 2009 Wiley-Liss, Inc.