Pyrimidine biosynthesis enzymes function in many cellular processes and are closely associated with pyrimidine antagonists used in cancer chemotherapy. These enzymes are well characterized from bacteria to mammals, but not in a simple metazoan. To study the pyrimidine biosynthesis pathway in Caenorhabditis elegans, we screened for mutants exhibiting resistance to the anticancer drug 5-fluorouracil (5-FU). In several strains, mutations were identified in ZK783.2, the worm homolog of human uridine phosphorylase (UP). UP is a member of the pyrimidine biosynthesis family of enzymes and is a key regulator of uridine homeostasis. C. elegans UP homologous protein (UPP-1) exhibited both uridine and thymidine phosphorylase activity in vitro. Knockdown of other pyrimidine biosynthesis enzyme homologs, such as uridine monophosphate kinase and uridine monophosphate synthetase, also resulted in 5-FU resistance. Uridine monophosphate kinase and uridine monophosphate synthetase proteins are redundant, and show different, tissue-specific expression patterns in C. elegans. Whereas pyrimidine biosynthesis pathways are highly conserved between worms and humans, no human thymidine phosphorylase homolog has been identified in C. elegans. UPP-1 functions as a key regulator of the pyrimidine salvage pathway in C. elegans, as mutation of upp-1 results in strong 5-FU resistance.