Bax is a pro-apoptotic protein that mediates intrinsic cell-death signaling. Using a yeast-based functional screening approach, we identified interferon gamma receptor beta chain (IFNgammaR2) as a new Bax suppressor. IFNgammaR2 is a component of the IFNgamma receptor complex along with the IFNgammaR alpha chain (IFNgammaR1). Upon IFNgamma binding, a conformational change in the receptor complex occurs that activates the Jak2/STAT1 signaling cascade. We found that the C-terminal region (amino acids 296-337) of IFNgammaR2 (IFNgammaR2(296-337)) contains a novel Bax inhibitory domain. This portion does not contain the Jak2-binding domain; therefore, the antiapoptotic function of IFNgammaR2 is independent of JAK/STAT signaling. IFNgammaR2(296-337) rescued human cells from apoptosis induced by overexpression of Bax but not Bak. Overexpression of IFNgammaR2 (wild type and IFNgammaR2(296-337)) rescued cells from etoposide and staurosporine, which are known to induce Bax-mediated cell death. Interestingly, IFNgammaR2 inhibited apoptosis induced by the BH3-only protein Bim-EL, suggesting that IFNgammaR2 inhibits Bax activation through a BH3-only protein. Bax and IFNgammaR2 were co-immunoprecipitated from cell lysates prepared from HEK293 and DAMI cells. Furthermore, direct binding of purified recombinant proteins of Bax and IFNgammaR2 was also confirmed. Addition of recombinant Bcl-2 protein to cell lysates significantly reduced the interaction of IFNgammaR2 and Bax, suggesting that Bcl-2 and IFNgammaR2 bind a similar domain of Bax. We found that the C-terminal fragment (cytoplasmic domain) of IFNgammaR2 is expressed in human cancer cell lines of megakaryocytic cancer (DAMI), breast cancer (MDA-MD-468), and prostate cancer (PC3 cells). The presence of the C-terminal fragment of IFNgammaR2 may confer on cancer cells resistance to apoptotic stresses. Our discovery of the anti-Bax activity of the cytoplasmic domain of IFNgammaR2 may shed new light on the mechanism of how cell death is controlled by IFNgamma and Bax.