Skeletal muscle triglycerides are markers for insulin resistance in type 2 diabetes. Recently, MR spectroscopy was adapted for in vivo measurement of triglycerides in animal models and for the characterization of new therapeutic approaches. Because of small MR spectroscopy voxel sizes used in skeletal muscles, surface coils are used for signal reception. Furthermore, to obtain well-resolved and undistorted lipid spectra, muscle fibers must be aligned parallel to the magnetic field. Consequently, to achieve a high signal-to-noise ratio and spectral quality, a coil setup must combine high sensitivity with a reliable and reproducible positioning of muscle and voxel. These demands are difficult to match using surface coils. Here, a coil platform is described, which uses inductively coupled Helmholtz coil setup combined with a leg retainer system for rats. The new system allows for measurement of intramyocellular lipids with high signal-to-noise ratio and for significantly improved animal handling, positioning, and throughput.
(c) 2009 Wiley-Liss, Inc.