The purpose of this paper is to measure the variability of a population of white matter fiber bundles without imposing unrealistic geometrical priors. In this respect, modeling fiber bundles as currents seems particularly relevant, as it gives a metric between bundles which relies neither on point nor on fiber correspondences and which is robust to fiber interruption. First, this metric is included in a diffeomorphic registration scheme which consistently aligns sets of fiber bundles. In particular, we show that aligning directly fiber bundles may solve the aperture problem which appears when fiber mappings are constrained by tensors only. Second, the measure of variability of a population of fiber bundles is based on a statistical model which considers every bundle as a random diffeomorphic deformation of a common template plus a random non-diffeomorphic perturbation. Thus, the variability is decomposed into a geometrical part and a "texture" part. Our results on real data show that both parts may contain interesting anatomical features.