In animal models of early Parkinson's disease (PD), motor deficits are accompanied by excessive striatal glutamate release. Blockade of group I metabotropic glutamate receptors (mGluRs), endocannabinoid degradation and nitric oxide (NO) synthesis combats PD symptoms. Activation of group I mGluRs with the specific agonist 3,5-dihydroxyphenylglycine (DHPG) induces long-term depression of corticostriatal transmission (LTD(DHPG)) in the adult mouse striatum requiring NO synthesis downstream to cannabinoid CB1 receptor (CB1R) activation suggesting a dual role for LTD(DHPG): neuroprotective by down-regulation of glutamatergic transmission and, under certain circumstances, neurotoxic by release of NO. We report now that LTD(DHPG) undergoes a developmental switch from N-methyl-D-aspartate (NMDA)-receptor-dependent/CB1R-independent to NMDA receptor-independent/CB1R-dependent plasticity with NO playing an essential role for LTD(DHPG) at all developmental stages. The gain in function of CB1R is explained by their developmental up-regulation evaluated with real-time reverse transcription-polymerase chain reaction. These findings are relevant for the pathophysiology and therapy of PD as they link the activation of group I mGluRs, endocannabinoid release, and striatal NO production.