This study was designed to radiographically evaluate the effect of surface macro-and microstructures within the coronal portion of the external hex implant at the marginal bone change after loading. The fifty-four patients included in the study were randomly assigned to treatment groups with rough-surface implants (TiUnite, n = 45), a hybrid of smooth and rough surface implants (Restore, n = 45) or rough-surface with microthreads implants (Hexplant, n = 45). Clinical and radiographic examinations were conducted at the time of implant loading (baseline) and at 1-year post-loading. A three-level mixed-effect ancova was used to test the significance of the mean marginal bone change of the three implant groups from baseline to 1-year follow-up. At 1-year, significant differences were noted in marginal bone loss recorded for the three groups (P < 0.0001). The rough surface with microthread implants had a mean crestal bone loss of 0.42 +/- 0.27 mm; the rough surface implants, 0.81 +/- 0.27 mm; and the hybrid surface implants, 0.89 +/- 0.41 mm. Within the limitations of this study, a rough surface with microthreads at the coronal part of implant maintained the marginal bone level against functional loading better than implants without these two features.