Mapping accessible chromatin regions using Sono-Seq

Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):14926-31. doi: 10.1073/pnas.0905443106. Epub 2009 Aug 18.

Abstract

Disruptions in local chromatin structure often indicate features of biological interest such as regulatory regions. We find that sonication of cross-linked chromatin, when combined with a size-selection step and massively parallel short-read sequencing, can be used as a method (Sono-Seq) to map locations of high chromatin accessibility in promoter regions. Sono-Seq sites frequently correspond to actively transcribed promoter regions, as evidenced by their co-association with RNA Polymerase II ChIP regions, transcription start sites, histone H3 lysine 4 trimethylation (H3K4me3) marks, and CpG islands; signals over other sites, such as those bound by the CTCF insulator, are also observed. The pattern of breakage by Sono-Seq overlaps with, but is distinct from, that observed for FAIRE and DNase I hypersensitive sites. Our results demonstrate that Sono-Seq can be a useful and simple method by which to map many local alterations in chromatin structure. Furthermore, our results provide insights into the mapping of binding sites by using ChIP-Seq experiments and the value of reference samples that should be used in such experiments.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Base Sequence
  • Chromatin*
  • Chromosome Mapping / methods*
  • Gene Expression
  • Genetic Markers
  • HeLa Cells
  • Histones / metabolism
  • Humans
  • Methylation
  • Mice
  • Oligonucleotide Array Sequence Analysis / methods*
  • Sequence Analysis, DNA / methods*

Substances

  • Chromatin
  • Genetic Markers
  • Histones

Associated data

  • GEO/GSE12781
  • GEO/GSE14022