Microtubule-dependent cell morphogenesis in the fission yeast

Trends Cell Biol. 2009 Sep;19(9):447-54. doi: 10.1016/j.tcb.2009.06.003. Epub 2009 Aug 25.

Abstract

In many systems, microtubules contribute spatial information to cell morphogenesis, for instance in cell migration and division. In rod-shaped fission yeast cells, microtubules control cell morphogenesis by transporting polarity factors, namely the Tea1-Tea4 complex, to cell tips. This complex then recruits the DYRK kinase Pom1 to cell ends. Interestingly, recent work has shown that these proteins also provide long-range spatial cues to position the division site in the middle of the cell and temporal signals to coordinate cell length with the cell cycle. Here I review how these microtubule-associated proteins form polar morphogenesis centers that control and integrate both spatial and temporal aspects of cell morphogenesis.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Cell Division
  • Humans
  • Microtubules / metabolism*
  • Protein Binding
  • Protein Transport
  • Schizosaccharomyces / cytology*
  • Schizosaccharomyces / growth & development
  • Schizosaccharomyces / metabolism*
  • Schizosaccharomyces pombe Proteins / metabolism*

Substances

  • Schizosaccharomyces pombe Proteins