Introduction: The mouse monoclonal antibody MOv18, directed against the alpha-isoform of folate receptor (FR), was investigated to identify the optimal radioconjugate for radioimmunotherapy of minimal residual disease in ovarian cancer.
Methods: Pharmacokinetics, biodistribution, long-term therapeutic efficacy and toxicity of MOv18, labeled with the beta-emitters (131)I, (90)Y and (177)Lu, were compared in a xenografted mouse model, composed by two cell lines, A431FR and A431MK, differing only for FR expression.
Results: A shorter blood clearance and a higher tumor uptake were observed for (90)Y- and (177)Lu- compared to (131)I-MOv18, and a shorter blood pharmacokinetics was recorded in A431FR-bearing animals. At equitoxic maximum tolerable doses, the general irradiation by (131)I- and (90)Y-MOv18 gives rise to strong targeted effects on A431FR and nontargeted effects on A431MK tumors, while (177)Lu-MOv18 was able to eradicate small size tumor masses expressing the antigen of interest exerting only mild non-targeted effects.
Conclusion: (177)Lu-MOv18 at the maximal tolerated dose is the immunoradioconjugate with the best therapeutic window in experimental conditions of small tumor volume.