The C4'-oxidized abasic site (C4-AP) is a commonly formed DNA lesion, which generates two types of interstrand cross-links (ICLs). The kinetically favored cross-link consists of two full length strands and forms reversibly and exclusively with dA. Cross-link formation is attributed to condensation of C4-AP with the N6-amino group of dA. Formation of the thermodynamic ICL involves cleavage of the strand containing C4-AP on the 3'-side of the lesion. The ratios and yields of the ICLs are highly dependent upon the local sequence. Product analysis of enzyme-digested material reveals that the ICL with dA is a cyclic adduct. Formation of the thermodynamically favored cross-link is catalyzed by the surrounding DNA sequence and occurs favorably with dC and dA but not with dG or dT. Mechanistic studies indicate that beta-elimination from C4-AP is the rate-limiting step in the formation of the thermodynamic ICL and that the local DNA environment determines the rate constant for this reaction. The efficiency of ICL formation, the stability of the thermodynamic products, and their possible formation in cells (Regelus, P.; et al. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 14032) suggest that these lesions will be deleterious to the biological system in which they are produced.