Study design: Radiographic results of a multicenter, prospective randomized study comparing 1-level cervical total disc replacement (TDR-C) with anterior cervical discectomy and fusion (ACDF).
Objective: To evaluate the effect on device-level lordosis, cranial and caudal adjacent level lordosis, and overall cervical sagittal alignment (C2-C6) after TDR-C or ACDF.
Summary of background data: Cervical total disc replacement (TDR-C) has emerged as a promising alternative to ACDF in a select group of patients. The maintenance and/or improvement of sagittal balance is essential in preserving functionality after reconstructive spinal procedures. Recent studies have documented changes in spinal alignment after TDR-C, however, no studies have compared these changes to those noted in matched group of patients that have undergone ACDF.
Methods: Radiographic data were obtained from the randomized group of a multicenter, randomized, prospective, controlled study comparing TDR-C (ProDisc-C, Synthes Spine, West Chester, PA) with ACDF in the treatment of 1-level cervical disc disease. Complete radiographic data were available for 89 TDR-C patients (average age: 42.2 years) and 91 ACDF patients (average age: 41.7 years). Cervical lordosis at the device level, cranial and caudal adjacent levels, and total cervical lordosis (C2-C6) were independently measured before surgery and 2 years after surgery using custom image stabilization software (Quantitative Motion Analysis, Medical Metrics, Inc, Houston, TX).
Results: C5-C6 was the most common operative level (TDR-C: 54%; ACDF: 55%). At 2 years after surgery, the TDR-C group experienced statistically significant changes in lordosis of 3.0 degrees (P < 0.001), 0.90 degrees (P = 0.006), and -1.9 degrees (P < 0.001) at the operative, cranial, and caudal adj-acent levels, respectively. ACDF experienced changes in lordosis of 4.2 degrees (P < 0.001), 1.0 degrees (P = 0.001), and -1.5 degrees (P = 0.001), respectively. The between-group differences were significant at the operative level (P = 0.03) and the caudal adjacent level (P = 0.05). Total cervical lordosis increased in both TDR-C and ACDF by 3.1 degrees and 3.8 degrees , respectively (P = 0.49).
Conclusion: In both TDR-C and ACDF, lordosis increased at the device-level, cranial adjacent level, and in total cervical lordosis, while lordosis decreased at the caudal adjacent level. Although ACDF facilitated a greater increase in device level lordosis (+1.25 degrees ) and less loss of lordosis at the caudal adjacent level compared with TDR-C (-0.39 degrees ), the clinical relevance of the small differences remain unknown.