Allogeneic haematological stem cell transplantation (HSCT) has developed into immunotherapy. Donor CD4+, CD8+ and natural killer (NK) cells have been reported to mediate graft-versus-leukaemia (GVL) effects, using Fas-dependent killing and perforin degranulation to eradicate malignant cells. Cytokines, such as interleukin-2, interferon-gamma and tumour necrosis factor-alpha potentiate the GVL effect. Post-transplant adoptive therapy of cytotoxic T-cells (CTL) against leukaemia-specific antigens, minor histocompatibility antigens, or T-cell receptor genes may constitute successful approaches to induce anti-tumour effects. Clinically, a significant GVL effect is induced by chronic rather than acute graft-versus-host disease (GVHD). An anti-tumour effect has also been reported for myeloma, lymphoma and solid tumours. Reduced intensity conditioning enables HSCT in older and disabled patients and relies on the graft-versus-tumour effect. Donor lymphocyte infusions promote the GVL effect and can be given as escalating doses with response monitored by minimal residual disease. A high CD34+ cell dose of peripheral blood stem cells increases GVL. There is a balance between effective immunosuppression, low incidence of GVHD and relapse. For instance, T-cell depletion of the graft increases the risk of relapse. This paper reviews the current knowledge in graft-versus-cancer effects. Future directions, such as immunotherapy using leukaemia-specific CTLs, allo-depleted T-cells and suicide gene manipulated T-cells, are presented.