We describe the growth of Zn(1-x)Mn(x)Se nanowires in ultrahigh vacuum seeded by Au nanodroplets. Electron microscopy reveals the formation of single-crystal c-axis wurtzite nanowires (typically 1-3 microm long) with Mn concentrations up to x approximately 0.6, accompanied by a dense horizontal undergrowth of shorter, crooked nanowires. Magnetophotoluminescence measurements show evidence for sp-d exchange effects in a reduced symmetry environment. We find that the optical emission is surprisingly dominated by the undergrowth of crooked nanowires.