Introduction: Pericardial fat is emerging as an important parameter for cardiovascular risk stratification. We extended previously developed quantitation of thoracic fat volume (TFV) from non-contrast coronary calcium (CC) CT scans to also quantify pericardial fat volume (PFV) and investigated the associations of PFV and TFV with CC and the Metabolic Syndrome (METS).
Methods: TFV is quantified automatically from user-defined range of CT slices covering the heart. Pericardial fat contours are generated by spline interpolation between 5-7 control points, placed manually on the pericardium within this cardiac range. Contiguous fat voxels within the pericardium are identified as pericardial fat. PFV and TFV were measured from non-contrast CT for 201 patients. In 105 patients, abdominal visceral fat area (VFA) was measured from an additional single-slice CT. In 26 patients, images were quantified by two readers to establish inter-observer variability. TFV and PFV were examined in relation to Body Mass Index (BMI), waist circumference and VFA, standard coronary risk factors (RF), CC (Agatston score >0) and METS.
Results: PFV and TFV showed excellent correlation with VFA (R=0.79, R=0.89, p<0.0001), and moderate correlation with BMI (R=0.49, R=0.48, p<0.0001). In 26 scans, the inter-observer variability was greater for PFV (8.0+/-5.3%) than for TFV (4.4+/-3.9%, p=0.001). PFV and TFV, but not RF, were associated with CC [PFV: p=0.04, Odds Ratio 3.1; TFV: p<0.001, OR 7.9]. PFV and TFV were also associated with METS [PFV: p<0.001, OR 6.1; TFV p<0.001, OR 5.7], unlike CC [OR=1.0 p=NS] or RF. PFV correlated with low-HDL and high-glucose; TFV correlated with low-HDL, low-adiponectin, and high glucose and triglyceride levels.
Conclusions: PFV and TFV can be obtained easily and reproducibly from routine CC scoring scans, and may be important for risk stratification and monitoring.