In arid regions of the southwestern United States, municipal wastewater treatment plants commonly discharge treated effluent directly into streams that would otherwise be dry most of the year. A better understanding is needed of how effluent-dependent waters (EDWs) differ from more natural aquatic ecosystems and the ecological effect of low levels of environmentally persistent organic wastewater compounds (OWCs) with distance from the pollutant source. In a controlled experiment, we found 26 compounds common to municipal effluent in treatment raceways all at concentrations <1.0 microg/L. Male bonytail chub (Gila elegans) in tanks containing municipal effluent had significantly lower levels of 11-ketotestosterone (p=0.021) yet higher levels of 17beta-estradiol (p=0.002) and vitellogenin (p=0.036) compared to control male fish. Female bonytail chub in treatment tanks had significantly lower concentrations of 17beta-estradiol than control females (p=0.001). The normally inverse relationship between primary male and female sex hormones, expected in un-impaired fish, was greatly decreased in treatment (r=0.00) versus control (r=-0.66) female fish. We found a similar, but not as significant, trend between treatment (r=-0.45) and control (r=-0.82) male fish. Measures of fish condition showed no significant differences between male or female fish housed in effluent or clean water. Inter-sex condition did not occur and testicular and ovarian cells appeared normal for the respective developmental stage and we observed no morphological alteration in fish. The population-level impacts of these findings are uncertain. Studies examining the long-term, generational and behavioral effects to aquatic organisms chronically exposed to low levels of OWC mixtures are needed.