Laboratory-scale reactors containing mixtures of municipal solid waste and wastewater treatment biosolids were monitored to assess the effect of biosolids on refuse decomposition and on phosphorus (P) cycling and speciation among orthophosphate, acid-hydrolysable P, and organic P. The co-disposal of 10 to 20% (by wet weight) aerobically-digested biosolids with residential refuse was compatible with refuse decomposition although the biosolids did not increase either the maximum methane production rate or the cumulative yield, and did not reduce lag times to the onset of methane production. The results of this study indicated that dissolved reactive phosphorus (DRP) was the dominant dissolved P fraction throughout refuse decomposition and that it was negatively correlated with the methane production rate and pH (r² = 0.35 for both). P was not found to limit methane production. Biosolids increased dissolved P as well as ammonia-N in some reactors, but this did not have a significant impact on maximum methane production rates. The maximum tolerated Na+ and K+ concentrations during active methane production were at least 4100 mg Na+ L⁻¹ and 800 mg K+ L⁻¹, respectively.