This review focuses on the role of nanostructure and nanoscale materials for tissue engineering applications. We detail a scaffold production method (electrospinning) for the production of nanofiber-based scaffolds that can approximate many critical features of the normal cellular microenvironment, and so foster and direct tissue formation. Further, we describe new and emerging methods to increase the applicability of these scaffolds for in vitro and in vivo application. This discussion includes a focus on methods to further functionalize scaffolds to promote cell infiltration, methods to tune scaffold mechanics to meet in vivo demands and methods to control the release of pharmaceuticals and other biologic agents to modulate the wound environment and foster tissue regeneration. This review provides a perspective on the state-of-the-art production, application and functionalization of these unique nanofibrous structures, and outlines future directions in this growing field.